Published by:

László Kudela

Published on:

Aug 2 2021

Reading Time:

5 minutes

Clients often ask us about the accuracy of ReveaL. Usually, these questions are phrased as “Are you sure the results are correct?“, “Have you compared your meshless method to standard finite elements?“. This makes complete sense: a novel technology needs to build up its reputation before people consider adopting it.

One can think of various ways to compare values that ReveaL and a standard FEM tool delivers. For elastic problems, a good basis of comparison would be to look at the displacements or stresses at specific points of the object. Also, the amount of elastic energy that the body stores during its deformation is a popular indicator of correctness.

If we don’t only want to look at specific points or the strain energy, a possibly more spectacular way is to compare the natural frequencies of the body computed by ReveaL and another FEM tool. Let’s have a closer look on such an example from the automotive industry and perform a meshless eigenfrequency analysis of a cast part.

The world of natural frequencies

“If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.” – Nikola Tesla

If an object made of some elastic material is struck, it starts to vibrate at certain frequencies. These natural frequencies depend on its shape and material. For example, a tuning fork made of steel is shaped so that it will sound exactly at 440Hz if you hit it against a surface. This makes it very useful for tuning musical instruments.

There are cases when having a natural frequency at the wrong spot will cause unfavorable effects. Take a skyscraper hit by an earthquake, for example. If the frequency of the ground’s motion matches one of the natural frequencies of the building, it might even collapse. The designers of the building need to avoid that this resonance occurs when designing the building.

Similarly, if you build a car, you want to make sure that the metal parts will not resonate at the frequency where the engine operates. If you don’t do that, the driver will hear disturbing sounds when driving at certain speeds. Even if we forget about acoustics, it is an important job for structural engineers to determine the natural frequencies. For example, when performing a dynamic simulation on a part, the natural frequencies are key indicators about the right time step size.

Natural frequencies of a cast aluminum part

In one pilot project, we were given the following part in the form of a STEP file:

This is a cast aluminum part from the automotive industry. The goal that we set for this case was to compute the first 9 natural frequencies of the object using ReveaL, while our partners perform the same analysis on their side using another commercial FEM tool. Ideally, the results from our end will match their results computed by them.

So we loaded the part in ReveaL, set the material parameters and let the computation run. Fortunately, we could avoid the mesh generation step, and directly have the eigenfrequencies (=natural frequencies) and eigenmodes computed. The first three eigenmodes look as:

First eigenmode, ReveaL and standard FEM tool

Second eigenmode, ReveaL and standard FEM tool

Third eigenmode, ReveaL and standard FEM tool

“Great, the eigenmodes match very well” – we thought. What about the values of the eigenfrequencies? After all, we are interested in numbers, and not only the colorful pictures about eigenmodes.

How accurate is ReveaL?

To answer the question of accuracy, we compared the first 9 eigenfrequencies to standard FEM in a tabular form:

EigenmodeEigenfrequency ReveaLEigenfrequency Standard FEMDifference
#1745.784 Hz744.85 Hz0.13%
#2830.133 Hz827.87 Hz0.27%
#31304.5 Hz1310.83 Hz0.48%
#41394.59 Hz1406.44 Hz0.84%
#51539.16 Hz1542.16 Hz0.19%
#61745.49 Hz1748.12 Hz0.15%
#71937.53 Hz1944.03 Hz0.33%
#82311.54 Hz2317.98 Hz0.28%
#92503.14 Hz2511.47 Hz0.33%

As the table shows, the results delivered by ReveaL are within 1% of those that are computed by a standard FEM tool. However, a very important feature that distinguishes ReveaL from standard FEM approaches is the minimum amount of preprocessing effort. The only manual labor required in our workflow was to load the model, set the material parameters and the problem type, then launch the computation.

Why choose ReveaL over standard FEM?

To be fair, the mesh generator of the standard FEM tool did succeed for this model. This makes ReveaL’s advantages less apparent for this specific case. But: imagine now that the engineer who is looking at the results realizes that one of the frequencies lies exactly at an unwanted value. Clearly, he needs to apply a modification to the design. For standard FEM, changing the design would mean generating a new mesh, an extra step which is pretty much unnecessary. In fact, it’s not only unnecessary but a potential show-stopper, as every design change carries the danger of introducing geometric flaws. Flaws can brake mesh generators in spectacular ways, as we saw in the last post.

If, however, we remain in the meshless world, the hassle of going for another design iteration can be drastically reduced. The real power or ReveaL becomes more pronounced if we turn our attention to flawed geometries.

Applications beyond standard CAD

There is something that is even more interesting than standard CAD-based applications. In the next post, we will leave the CAD world behind and look at questions that do not start from CAD geometries at all. We will perform the same analysis on a surface scan of the cast aluminum component, leading us in the direction of reverse engineering. Stay tuned!

0
We love to hear your opinion! Leave us a comment!x
()
x